
X

Y

-pic User's Guide

Kristo�er H. Rose hkris@diku.dki

�

Version 2.12, October 25, 1994

Abstract

X

Y

-pic is a package for typesetting graphs and diagrams

using plain T

E

X, L

A

T

E

X, A

M

S-L

A

T

E

X, and A

M

S-T

E

X.

Several modes of input are supported; this guide con-

centrates on how to typeset `matrix-like' diagrams like

commutative diagrams in the following style:

U

y

x

X �

Z

Y

q

p

X

f

Y

g

Z

was typeset by the X

Y

-pic input lines

\diagram

U \ddrto_y \drto \drrto^x \\

& X \times_Z Y \dto^q \rto_p & X \dto_f \\

& Y \rto^g & Z

\enddiagram

Such diagrams have the following characteristics:

� Speci�ed as a matrix of entries that are automat-

ically aligned in rows and columns.

� Any entry may be connected to any other entry

using a variety of arrow styles all rotated and

stretched as required.

� Arrows may be decorated with labels that are tied

to a speci�ed point along the arrow and extend in

a particular direction.

� Arrows may be paired, cross each other, and

visit/bend around other entries `on the way'.

� Complete `low-level' graphic language for drawing

independently of the matrix structure.

Remark: X

Y

-pic release 2.12 is also a �-release of X

Y

-

pic version 3, referred to here as v3 . This is greatly

enhanced and extended relative to version 2. Many fea-

tures described in this document are therefore obsolete

�

DIKU (Computer Science dept.), University of Copenhagen,

Universitetsparken 1, DK{2100 K�benhavn �, Denmark.

but remain valid (as a special `compatibility' mode).

We remark it at the end of a section whenever this is

the case; look in the X

Y

-pic Reference Manual [3] for

the details.

Contents

1 Basics 2

1.1 Loading : : : : : : : : : : : : : : : : : : 2

1.2 Entries : : : : : : : : : : : : : : : : : : : 2

1.3 Arrows : : : : : : : : : : : : : : : : : : : 2

1.4 Labels : : : : : : : : : : : : : : : : : : : 3

1.5 Breaks : : : : : : : : : : : : : : : : : : : 3

1.6 Bends : : : : : : : : : : : : : : : : : : : 3

1.7 Speeding up typesetting : : : : : : : : : 4

2 More Arrows and Labels 4

2.1 Explicit positioning of labels : : : : : : : 4

2.2 Extra tips : : : : : : : : : : : : : : : : : 5

2.3 Sliding arrows sideways : : : : : : : : : 5

2.4 More targets : : : : : : : : : : : : : : : 5

2.5 Arrows passing under : : : : : : : : : : 6

2.6 More bending arrows : : : : : : : : : : : 7

2.7 De�ning new arrow types : : : : : : : : 7

3 More Entries 8

3.1 Text : 8

3.2 Extra entries outside the matrix : : : : 8

3.3 Resizing and spacing : : : : : : : : : : : 9

3.4 Style : 9

3.5 Framing and circling : : : : : : : : : : : 9

3.6 Naming for later use as targets : : : : : 10

3.7 Grouping objects : : : : : : : : : : : : : 10

4 Availability and Further Information 11

4.1 Getting X

Y

-pic : : : : : : : : : : : : : : : 11

4.2 The future and backwards compatibility 11

Answers to all exercises 11

List of Figures

1 Standard directions for straight arrows. 3

2 Standard tips. : : : : : : : : : : : : : : : 6

1

Introduction

This guide explains some features of X

Y

-pic version 2

that are related to diagram typesetting { newer fea-

tures are described in the reference manual [3] (some

are mentioned in italicised comments). It assumes that

you have some experience in using T

E

X for typeset-

ting mathematics, e.g., have studied [1, ch. 16{19], [2,

sec. 3.3], or [4].

The �rst section describes what you need to get

started. Section 2 and 3 explain advanced use of arrows

and entries, respectively. Section 4 explains where and

under what conditions X

Y

-pic is available and points

to further information. Throughout we give exercises

that you should be able to solve as you go along; all

exercises are answered at the end, just prior to the bib-

liography.

1 Basics

This section explains the X

Y

-diagram construction con-

cepts needed to get started with typesetting category

theory diagrams.

1.1 Loading

X

Y

-pic is loaded by inserting a line with the command

\input xypic

in the de�nitions part of your document (after any

\documentstyle line).

1

This describes loading in compatibility mode

{ in v3 the individual features of X

Y

-pic can

be loaded separately.

1.2 Entries

A diagram is created by the commands

\diagram : : : \enddiagram

where the `: : : ' should be replaced by entries to be

aligned in rows and columns where

� entries in a row are separated by & and

� rows are separated by \\.

For example,

A

P

m

i=n

i

2

�

D

1

This will loadX

Y

-pic in a special `compatibility mode' which

de�nes the commands described in this guide as they have been

available since version 2.4 of the package. Other modes are avail-

able; see the Reference Manual [3] for details.

was typeset by

\diagram

A &\sum_{i=n}^m {i^2} \framed \\

& \bullet & D \ulto

\enddiagram

Notice the following:

� entries are typeset as mathematics (in `text style'),

� all entries are centered,

� the separation between rows and columns is usu-

ally quite large in a diagram,

� entries at the end of rows that are empty may be

omitted, and most importantly:

� \X

Y

-commands" (like \framed and \ulto here)

can decorate an entry and connect it with others

without changing the diagram layout.

The style and spacing can be changed; we discuss that

in section 3.

In v3 several matrices can be typeset in the

same picture (and refer to each other's en-

tries), and matrices can be rotated.

1.3 Arrows

An `arrow' in anX

Y

-pic diagram is a generic term for the

drawn decorations that are added to the basic matrix

structure. In X

Y

-pic all arrows must be speci�ed along

with the entry they start in; this is called their base

entry . Each particular arrow then refers explicitly to

its target entry .

The most commonly used arrows have names start-

ing with either u or d for up or down, followed by either

l or r for left and right, e.g., the arrow \drto reads

`down and then right to'. Figure 1 shows the possible

straight arrows, all leaving the entry base and ending at

the entry with their name in. The relative coordinates

speci�ed in this way are purely logical, e.g., if the di-

agram contains very wide entries then the arrows will

be nearly horizontal. All the constructed arrows are

aligned along the line between the centers of the base

and target entries; they will not automatically disap-

pear under entries that they cross (we discuss how this

is achieved in section 2.5).

If you are making large diagrams where the above

prede�ned arrows are not su�cient then you can always

resort to the general form \xto[hop] where hop should

be a sequence of the letters dulr as described above,

e.g., \xto[u] is equivalent to \uto but \xto[uuulll]

has no short-form equivalent.

The directions also exist with to replaced by various

other basic line styles:

to
line dashed dotted double

2

\uullto \uulto \uuto \uurto \uurrto

\ullto \ulto \uto \urto \urrto

\llto \lto

base

\rto \rrto

\dllto \dlto \dto \drto \drrto

\ddllto \ddlto \ddto \ddrto \ddrrto

Figure 1: Standard directions for straight arrows.

Exercise 1: Typeset

� �

� �

In v3 mnemonic names are used for arrows,

e.g., the �ve basic line styles above correspond

to arrows {->}, {-}, {--}, {..}, and {=}.

1.4 Labels

You can put labels on arrows. Labels are conceptual-

ized as sub- and superscripts on arrows such that they

are placed in the usual positions (as `limits'), i.e., ^

reads `above' and _ below on an arrow pointing right

but the positions depend only on the direction of the

arrow. For example,

\diagram

X \rto^a_b & Y & Z \lto^A_B

\enddiagram

will set

X

a

b

Y Z

A

B

Labels that do not consist of a single letter, digit, or

control sequence, should be enclosed in {: : :}.

The placement of the labels only depends on the di-

rection of the arrow: it is placed perpendicular to the

center of the arrow (measured from the centers of the

objects at the ends). More details concerning labels

are given in section 2.1.

Exercise 2: Typeset the second axiom of category

theory as

A

f

f ;g

B

g

g;h

C

h

D

(2)

1.5 Breaks

It is also possible to `break' an arrow with a label using

the character |:

\diagram A \rto|f & B \enddiagram

will set

A

f

B

If you just want an empty break you should use the spe-

cial \hole break: the arrow A B was typeset by

including \diagram A \rto|\hole & B \enddiagram

in the text. You may mix a break with other labels,

but the break should always be last. There is more on

breaks in section 2.2.

Exercise 3: Typeset the �rst axiom of category the-

ory as the display

A

f

f

B

i

B

g

B

g

C

(1)

1.6 Bends

There are special versions of to-arrows that go `around'

a neighbor entry and point to something `behind' it:

3

here are the horizontal ones:

\lltou^a

\lltod^a

entry

with

commands

a

a

a

a

\rrtou^a

\rrtod^a

There are similar vertical ones named \ddtol, \ddtor,

\uutol, and \uutor, and there is a special set of `self'

arrows:

\toul^a

a

\tour^a

a

\todl^a

a

\todr^a

a

and

\tolu^a

a

\toru^a

a

\told^a

a

\tord^a

a

These only exist for the to line style. In section 2.6 we

explain how other variants can be constructed.

Exercise 4: Typeset

x

f

f(x)

f

�1

1.7 Speeding up typesetting

One thing that you will notice is that X

Y

-pic is some-

times slow in typesetting diagrams (this is to be ex-

pected considering the number of drawing operations

performed as re
ected by the number last in each

xymatrix message). You can instruct X

Y

-pic to save

the details of a particular diagram in a �le name.xyc

(for `compiledX

Y

-pic') every time the diagram changes

by replacing the \diagram command with

\diagramcompileto{name}

This will cut the typesetting time considerably when-

ever the diagram is retypeset without change.

Note: this is only safe for diagrams that obey

the following restriction: all entries should start with

a non-expandable token like an ordinary (non-active)

character, \relax, or {}.

This is a v3 feature mentioned here because

it is a common question.

2 More Arrows and Labels

In this section we explain a number of variations of

the arrow commands that are useful in commutative

diagrams.

2.1 Explicit positioning of labels

The label commands explained in section 1.4 place the

label text near the center of the arrow. This, however,

may be changed by inserting a place between the ^, _,

or |, and the actual label. In general you may insert

the following:

� < will place the label at the point where the actual

arrow begins, i.e., `appears from under' the base,

so \diagram A \rto^<{+} &B \enddiagram will

typeset A

+

B .

� Similarly, > will place the label at the point

where the actual arrow ends, i.e., `disappears

below' the target, so \diagram A \rto^>{+} &B

\enddiagram will typeset A

+

B .

� << and >> will place the following label at a

point just a bit

2

further from the beginning and

end of the arrow, so \diagram A \rto^>>{+}

&B \enddiagram will typeset A

+

B . Using

more <s will move the label further in.

� More <s and >s may be given to make this

distance larger: \diagram A \rto^>>>{+} &B

\enddiagram will typeset A

+

B .

� A factor in ()s: (a) indicates that the label

should be `tied' to the point a of the way from

the center of the base entry (called (0)) to

the center of the target (called (1)) instead of

in the middle, so \diagram A \rto^(.3){+} &B

\enddiagram will typeset A

+

B .

� A factor can be given after some < or >s: in that

case the place is computed as if the base was the

place speci�ed by the <s and the target the place

speci�ed by the >s: \diagram A \rto^<(0){+}

&B \enddiagram will typeset A

+

B .

� Finally, a - means the same as <>(.5), i.e.,

place at the middle of the arrow rather than

the middle between the base and target, so

A� B �C �D

+

B was typeset by

2

`A bit' is in fact a T

E

X \jot which is 3pt.

4

\diagram

A\times B\times C\times D \rto^-{+} &B

\enddiagram

It becomes

A �B � C �D

+

B without - .

Exercise 5: Typeset

A

�

b

�

c

�d

D

B C

2.2 Extra tips

You can use the `break' feature described in section 1.5

to add extra arrow tips. This is done by using special

`standard tip' labels shown as ` in \drto ` in �gure 2.

Tips with more than one component must be en-

closed in {}, and tips can be rotated 180

�

by the

\rotate pre�x or optionally by the factor (f), �2 <

f � 2, to rotate it f � 90

�

clockwise. Furthermore

you can enclose any math in \squash{ : : :} to make it

of zero size and use it as a tip; \squash attempts to

center it but sometimes you might have to `help' by

adding spacing (e.g., using \, and \strut).

An arrow may have several breaks. They must, how-

ever, be given in the same order as they appear from

the base to the target of the arrow as illustrated here:

\rto|a|>\stop

a

\rto|<\stop|a

a

\rto|<\hole|<<\stop

\rto|>>\tip

\rto|<\hole|<<\ahook

\rto|<<\hole|<<<\tip

\rto|>{\squash\circ}

�

\rto|<{\rotate\tip}

\rline|>{\rotate(.6)\tip}

Notice how we use an extra |<\hole break to shorten

arrows to make space for `large' tails like hooks that

have most of their ink on the wrong side.

3

The above tips work with the basic arrow types to

(as shown), line, dashed, and dotted, however, only

\stop works with all arrows, i.e., also with double. If

you want an arrowhead on a double arrow then you

must use \Tip:

\rdouble|>\Tip

\rdouble|<\stop|>>\Tip|>\Tip

3

In version 2.6 and before this was automaticwith a |<< break

but this was a bug which has been �xed.

The v3 arrow command uses a much sim-

pler scheme: it interprets arrow generic de�-

nitions, e.g., {|-->>} becomes .

2.3 Sliding arrows sideways

It is often desirable to have several arrows between two

objects. This can be done by sliding either or both

arrows sideways by giving the distance as an optional

T

E

X dimension enclosed in <>s: it speci�es how far

`sideways' the arrow should be moved, e.g.,

\diagram

A \drto<1ex>^a_{.} \\

& B \ulto<1ex>^b \rto<1ex>^c

& C \lto<1ex>^d_{.}

\enddiagram

will typeset

A

a

:

B

b c

C

d

:

A positive distance will slide the arrow in the `^-

direction', e.g., the two arrows above are slid in the

direction of the labels a and b, respectively; a nega-

tive distance in the `_-direction'. The distance <1ex>

is often appropriate since it corresponds roughly to the

height of letters like `x', independently of the used type

size.

In v3 it is also possible to curve arrows and

there is special support for 2-cells.

2.4 More targets

In the general arrow constructions \xto, \xline,

\xdashed, \xdotted, and \xdouble, the target address

can be given in a large number of formats called posi-

tions. The full range of possibilities is described in the

reference manual [3]; here is a number of useful possi-

bilities:

� [r,c] , where r; c are integers, denotes the relative

entry found r rows below and c columns to the

right of the current entry (the current entry itself

is thus [0,0]). Each such pair corresponds to a

[hop] as described in section 1.3, e.g., [1,2] is

the same as [drr].

� "r,c" , where r; c are positive integers, denotes

the absolute entry found in the rth row and cth

column of the diagram; the top left entry is "1,1".

� t

0

;t , where t

0

is any target, changes the base entry

of the present arrow to t

0

and then sets the target

to t relative to the original base. For example,

\diagram

5

\tip \stop

\atip \astop

\ahook \aturn

\btip \bstop

\bhook \bturn

{\tip\stop} {\rotate\tip} {\rotate(1)\tip\astop} {\squash{+}}

+

Figure 2: Standard tips.

A \\

B & C \ulto <1ex>

\ulto;[] <1ex>

\enddiagram

typesets

A

B C

i.e. the \ulto arrow starts at the [ul] entry and

ends in the current entry (remember from x1.3

that \ulto is the same as \xto[ul]).

Composite targets may be constructed: any complete

target can be followed by

� +vector or -vector which changes the target to be

a zero-sized one at the position obtained by adding

or subtracting the vector to its center, or

� !vector which moves the center of the target by

the vector ;

where a vector should have the form

� <D

x

,D

y

> , where D

x

; D

y

are T

E

X dimensions, is

the vector with those coordinates,

� the following `corner o�sets' of a target are vectors

as shown:

L R

D

U

DL DR

UL UR

(they must be speci�ed in upper case), and

� 0 is the zero vector.

These constructions are useful for pointing to corners

of entries, e.g.,

\diagram

\left[\sum^i\right] & j \lto+UR

\enddiagram

will typeset

h

P

i

i

j

Exercise 6: What is the di�erence between a target

t and the target t+0?

The position language of v3 is much richer

than this: there it is possible to build stacks

of positions, typeset material in the middle of

locating a position, etc.

2.5 Arrows passing under

The `x-form' of the morphisms may pass under any

other entry: Just insert 't, i.e., a quote character fol-

lowed by a target, for each entry that should be visited

except the last, `ordinary & �nal' entry:

\diagram

\circ

\xdashed '[dr] ^a |<\stop

'[rr]+D ^b

[drrr] ^c |>\tip

& \circ & \circ & \circ \\

\circ & \circ & \circ & \circ

\enddiagram

6

typesets

�

a

b c

� � �

� � � �

As you see, labels are set separately on each segment.

Exercise 7: Typeset the `lambda cube'

�! �C

�2 �P2

�! �P!

�! �P

Hint : `going under' an empty entry leaves a small gap

at that location.

2.6 More bending arrows

Finally, the x-form of arrows may bend around entries:

just insert `d t, i.e., a backquote, direction d, target t,

for each `turn' that starts out in the d-direction and

ends in a quarter turn towards the target t.

The possible directions are named like hops:

dl

d

dr

r

ur

u

ul

l

and the possible targets include all those discussed

above and in the reference manual [3].

Actually the direction letter is only required for the

�rst in a series of turns since the �nal direction of one

turn is the default for the following turn. The quarter

turns will have radius 10pt by default, but this can

be changed to any dimension R from a particular turn

and onwards by inserting /R immediately after the '

of the turn. Here is an example involving all of these

features:

\diagram

\circ \xto `r[d] ^a

`[rr] ^b

`/4pt[rr] ^c

`[rrr]^d

`[drrr]^e

[drrr]^f

& \circ & \circ & \circ \\

\circ & \circ & \circ & \circ

\enddiagram

typesets

�

a

b

c

d

e

f

� � �

� � � �

The example illustrates the following points:

� If the segment can not be made as short as re-

quired then it will point `past' the target. This is

useful for `going around' entries.

� Each target appears as many times as there are

quarter turns towards it, except the last target

that appears both as the last `-target and once as

an `ordinary' target to set the �nal stretch.

� The sizes of the intermediate targets are ignored.

The bending arrows in section 1.6 are special cases of

the above construction. There are several more ad-

vanced possibilities described in [3], notably the possi-

bility for non-quarter turns.

The v3 reference manual explains how the

in- and out-going direction and orientation of

each turn can be speci�ed.

2.7 De�ning new arrow types

All of the above arrows are really de�ned using the

primitive \morphism that is used like this:

\morphism hline typei htipi htipi hpathi

where

� hline typei is one of the following (shown above a

sample):

\solid \Solid \Ssolid

\dashed \Dashed \Ddashed

\dotted \Dotted \Ddotted

or the special {\dottedwith{x}} (where x may

be any math formula) to typeset lines like

x

x

x

x

x

x

7

� The �rst htipi speci�es what to do with the target

end of the connection, the second with the base

end. Each must be either \notip if no tip is de-

sired, one of the tips described in section 2.2, or

several such tips grouped together in {: : :} (e.g.,

use {\tip\stop} to get the tip of). Re-

member to use the special \Tip with \Solid and

\Dashed.

As an example, the \ddrto command described in sec-

tion 1.3 is really just an abbreviation for \morphism

\solid \tip \notip [ddr].

You can also de�ne new `straight arrow types' that

are available in all the standard directions shown in

the �gure in section 1.3 as well as the `x-form'. The

following uses this for a new arrow type mapsto:

\definemorphism{mapsto}\solid\tip\stop

\diagram

A \rmapsto^f & A\times A \dlmapsto_g \\

B \umapsto

\enddiagram

typesets

A

f

A� A

g

B

You should only use \definemorphism if you need it,

though, since it de�nes many control sequences. The

reference manual [3] describes how to de�ne your own

groups of bent arrows and how to make double and

triple tips. It also describes a much more general way

of de�ning new arrows.

The v3 arrow and directional commands

make this obsolete in that most arrows can

be speci�ed directly in a very compact way.

3 More Entries

This section explains what can go in an entry and how

the general form of the entries is changed.

3.1 Text

The simplest form of text in diagrams is set with the

\text command:

\diagram

\text{Program} \rto & \text{Code}

\enddiagram

will typeset

Program

Code

If your text contains several centered lines, you can

use \Text instead:

\diagram

\Text{A very long and stupid\\program}

\rrto^-{\Text{weird\\arrow}}

&& \Text<2pc>{Com\-pli\-cated\\Code}

\enddiagram

will typeset

A very long and stupid

program

weird

arrow

Com-

pli-

cated

Code

which illustrates that \text and \Text can also be used

to format labels; in particular notice how the - place

speci�er is useful in this context. Lines will be broken

where you have speci�ed \\ and if they are longer than

any T

E

X dimension speci�ed in <>s between \Text and

the text in {}s.

In v3 many variations are allowed, provided

the DVI-driver can support them. This in-

cludes rotation and scaling of text.

3.2 Extra entries outside the matrix

It is possible to put extra entries in your diagrams that

are not part of any `entry' of the matrix created by &

and \\. This is done with the `excursion command'

\save t \Drop {stu� } : : :\restore : : :

where t should be a target in one of the formats de-

scribed in section 2.4 and stu� may be anything that

can appear in an ordinary entry.

This will create a `pseudo entry' at t contain-

ing {stu� }: any X

Y

-pic commands following before

\restore will be relative to the pseudo entry rather

than to the entry hosting the excursion. Here is an

example, using an entry relative position as target:

\diagram

A \drline

& \save +<3cm,0cm>

\Drop{\Text<8pc>{%

This is a very big commentary

but it does not otherwise affect

the diagram.}}

\lto \dto \restore

\\

& B \rline & C \rline & D

\enddiagram

will typeset

A

This is a very big

commentary but it

does not otherwise

a�ect the diagram.

B C D

8

It illustrates how a `down' arrow does not necessarily

have to point particularly straight down|in this case

because it is based in the displaced pseudo entry. There

is a variant of \Drop called \drop that will set the

argument formula without any surrounding margin.

The v3 position language makes excursions

much simpler and more general.

3.3 Resizing and spacing

Entries can have their size and spacing changed in the

following ways:

� \grow{formula} is the same as formula except

that it is made the current objectmargin larger in

all directions.

� \grow<D>{formula}, where D is a T

E

X dimen-

sion, is similar except that D is used for the en-

largement instead|negative D means shrink it.

� \squarify{formula} will make formula square by

extending the smaller of its vertical/horizontal size

equal to the larger.

� \squarify<D>{formula}, where D is a T

E

X di-

mension, is similar except the square will be D on

each side.

You can change the objectmargin from the default jot

using the command

\objectmargin {hdimeni}

The usual spacing between the rows and columns can

be adjusted relative to the default 2pc by

\spreaddiagramrows {hdimeni}

\spreaddiagramcolumns {hdimeni}

that will increase the row/column separation by the

speci�ed amount (similar to \spreadmatrixlines of

A

M

S-T

E

X).

Finally, the minimal width and minimal height of all

objects can be set by

\objectwidth {hdimeni}

\objectheight {hdimeni}

With the v3 matrix feature an individual en-

try can be readjusted and resized without af-

fecting the overall structure. Also the entire

matrix can be rotated.

3.4 Style

As mentioned above, the entries of a diagram are set

in math mode in text style. You may change this by

rede�nining the macro \objectstyle, and the label

style by rede�ning \labelstyle. We can combine this

with the above to get `small diagrams', e.g., typing

$\left(

\spreaddiagramrows{-1.2pc}

\spreaddiagramcolumns{-1.2pc}

\def\objectstyle{\scriptstyle}

\def\labelstyle{\scriptstyle}

\diagram

A \rto^{a} & B \dto^{b} \\

A'\uto^{a'} & B'\lto_{b'}

\enddiagram

\right)$

in a paragraph will typeset \

0

@

A

a

B

b

A

0

a

0

B

0

b

0

1

A

".

You can even abandon the use of mathmode entirely:

the command \def \objectstyle {\hbox}will change

the format of entries to plain text.

With the v3 matrix command the style and

shape of individual entries can be changed.

3.5 Framing and circling

You can put a box around an entry in a diagram by

inserting the \framed command anywhere in the en-

try; if you prepend a T

E

X dimension in <>s then the

box will have rounded corners with radius as the T

E

X

dimension. There is also \Framed that does the same

but makes a double box. Here are some examples:

\framed \Framed

\framed<5pt>

\Framed<100pt>

(with maximum)

As you can see, the radius is scaled down to be useable;

furthermore none of these commands are guaranteed to

produce curves with a radius of more than 40pt.

In v3 many more frames are available.

In case you want `perfect' circles there are \circle

and \Circle commands that will just use half the

width of the current entry as their outer radius un-

less an explicit radius is given in <>s. They should be

used with \squarify; e.g.,

\spreaddiagramrows{-1pc}

\diagram

\rto^>(.5){\text{start}}

& \squarify<1em>{0} \circled \toru^b \rto_a

& \squarify<1em>{1} \circled \rto^b \tord_a

9

& \squarify<1em>{2} \circled \rto^b

\xto `r+D `[l] _a `[l] [l]

& \squarify<1em>{3} \Circled

\xto `r+U `[lll]^b `[lll] [lll]

\xto `r+D `[ll] _a `[ll] [ll]

\enddiagram

will typeset

start

0

b

a

1

b

a

2

b

a

3

b

a

Many more frames types are described in the reference

manual [3].

In v3 objects can be truly round.

3.6 Naming for later use as targets

If you build an entry with a long and complicated ex-

cursion then you might wish to be able to refer to it

later. X

Y

-pic provides a mechanism for this: if you

specify

\save : : :\go="name" \restore

then the last pseudo entry (target with the last object

\Drop'ed on it) build within the : : : excursion will be

saved for later referencing as "name"; however, it is

only possible to reference it `after' the naming, that

is, from entries right of the base entry in the current

row and below it. We need this if we want to point to

objects created in excursions:

\diagram

A \drline

& \save \go+<3cm,0cm>\Drop{\Text<8pc>{

This is still just a big commentary.}}

\lto \dto \go="comment" \restore \\

& B \rline & C \xto"comment" & D

\enddiagram

typesets

A

This is still just a

big commentary.

B C D

In v3 naming of labels is possible.

3.7 Grouping objects

Sometimes you wish to frame or otherwise treat a rect-

angle of objects as a single object. This is possible with

special excursions of this form:

\save t \merge : : :\restore : : :

will make the entire rectangle of entries with the host

entry in one corner and the target entry t in the other

corner the `current entry' until the \restore. Here is

an example where we frame a couple of objects and

point from the frame:

\diagram

0,{-1} & 0,0

\save\go[1,2]\merge\framed<5pt>

\xto[0,-1]\xto[1,-1]\xto[0,3]\xto[1,3]

\restore

& 0,1 & 0,2 & 0,3 \\

1,{-1} & 1,0 & 1,1 & 1,2 & 1,3 \enddiagram

will typeset

0;�1 0; 0 0; 1 0; 2 0; 3

1;�1 1; 0 1; 1 1; 2 1; 3

As you can see, the center of the \merged object is the

same as the one of the target preceeding it.

Here is a more advanced example where we create

two \merged objects with center in their center, name

them and then connect to them:

A B

A

0

B

0

C D

C

0

D

0

can be typeset by

\def\g#1{%

\save

\go[dr]\merge\go+C\merge\go="g#1"\framed

\restore}

%

\diagram

\g1 A\rto & B\dto & \g2 A'\rto & B'\dto \\

C\uto & D\lto & C'\uto & D'\lto

\save \go"g1" \xdotted"1,4"|>\tip \restore

\save \go"2,1"\xdashed"g2" |>\tip \restore

\enddiagram

The centering trick is achieved by using \merge twice

in \g: the second just merges with a dummy object

with center where we want the �nal merged object to

be centered! Then we can make arrows from/to the two

frames by using the two new targets "g1" and "g2".

Merging is part of the v3 position language.

10

4 Availability and Further Infor-

mation

4.1 Getting X

Y

-pic

The latest version of X

Y

-pic can be retrieved from In-

ternet anonymous ftp host ftp.diku.dk in /diku/

users/kris/TeX as well as from ftp.mpce.mq.edu.au

in /pub/maths/TeX in �les starting with xy. It has

also been contributed to the CTAN archives where it

is located (unpacked only) in the directory macros/

generic/diagrams/xypic.

License: X

Y

-pic is free software in the sense that it is

available under the following license conditions:

X

Y

-pic: Graphs and Diagrams with T

E

X

c

 1991{1994 Kristo�er H. Rose

The X

Y

-pic package is free software; you can

redistribute it and/or modify it under the

terms of the GNU General Public License as

published by the Free Software Foundation;

either version 2 of the License, or (at your

option) any later version.

The X

Y

-pic package is distributed in the

hope that it will be useful, but without any

warranty ; without even the implied warranty

of merchantability or �tness for a particular

purpose. See the GNUGeneral Public License

for more details.

You should have received a copy of the

GNU General Public License along with this

package; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge,

MA 02139, USA.

In practice this means that you are free to use X

Y

-pic

for your documents but if you send parts of the source

code of X

Y

-pic (or modi�ed versions of it) to someone

then you are obliged to ensure that the full source text

of X

Y

-pic is available to that someone (the full text of

the license explains this in somewhat more detail
�̂).

4.2 The future and backwards compat-

ibility

X

Y

-pic version 3 is currently under development

through collaboration between the author and Ross

Moore. Partial funding for this project has been

provided by a Macquarie University Research Grant

(MURG), by the Australian Research Council (ARC),

and through a research agreement with the Digital

Equipment Corporation (DEC).

We invite all users of X

Y

-pic to participate in this

venture with suggestions for adding features, eliminat-

ing misfeatures, and anything else that might improve

the usefulness of X

Y

-pic. Please contact the author for

further information or if you want to be kept up to date

with the development.

This does mean, however, that from time to time

features may turn out to be redundant because they

can be implemented in a better way. This is currently

the case for the following features of version 2.6 and

earlier versions; in each case a �x is proposed:

� Automatic `shortening' of arrow tails by |<< break

was a bug and has been `�xed' so it does not work

any more. Fix : Put a |<\hole break before it as

described in section 2.2.

� The version 2.6 * position operator is not avail-

able. Fix : Use the : and :: operators (described

in detail in the reference manual [3]).

� Using t

1

;t

2

:(x,y) as the target of an arrow com-

mand does not work. Fix : Enclose it in braces,

i.e., write {t

1

;t

2

:(x,y)}.

� The older \pit, \apit, and \bpit commands are

not de�ned. Fix : Use \dir{>} (or \tip) with

variants and rotation.

� The obsolete notation where an argument in

braces to \rto and the others was automatically

taken to be a `tail' is not supported. Fix : Use the

supported |<: : : notation.

Finally note that sometimes the spacing with ver-

sion 2.12 is slightly di�erent from that of earlier ver-

sions which had some spacing bugs.

Please report all other things that do not work the

same in version 2.6 and 2.12 to the author.

Answers to all exercises

Answer to exercise 1 (p.3): The author did

\diagram

\bullet \ddashed\drdouble\rline

& \bullet \ddotted \\

\bullet & \bullet \lto

\enddiagram

Answer to exercise 2 (p.3): The author used the

display

$$\diagram

A \rto^f \drto_{f;g}

& B \dto^g \drto^{g;h} \\

& C \rto_h & D

\enddiagram

\qquad(2)$$

11

Answer to exercise 3 (p.3): The author used

$$\diagram

A \dto_f \rto^f & B \dlto|{i_B} \dto^g \\

B \rto_g & C

\enddiagram

\qquad(1)$$

Answer to exercise 4 (p.4): The author did

\diagram

x \rrtou|f && f(x) \lltod|{f^{-1}}

\enddiagram

Answer to exercise 5 (p.5): The author used the

display

\diagram

A \dto ^>>\ast ^b \drto ^>>\ast ^c

\rto ^>>\ast ^d & D \\

B & C \enddiagram

Answer to exercise 6 (p.6): The size: t+0 always

has zero size.

Answer to exercise 7 (p.7): The author typed

\diagram

& \lambda\omega \rrline\xline'[d][dd]

& & \lambda C \ddline

\\

\lambda2\urline \rrline\ddline

& & \lambda P2 \urline\ddline

\\

& \lambda\underline\omega \xline'[r][rr]

& & \lambda P\underline\omega

\\

\lambda{\to} \rrline\urline

& & \lambda P \urline

\enddiagram

References

[1] Donald E. Knuth. The T

E

Xbook. Addison-Wesley,

1984.

[2] Leslie Lamport. L

A

T

E

X|A Document Preparation

System. Addison-Wesley, 2nd edition, 1994.

[3] Kristo�er H. Rose and Ross Moore. X

Y

-pic refer-

ence manual. Mathematics Report 94{155, MPCE,

Macquarie University, NSW 2109, Australia, June

1994. For version 2.10+. Latest version available by

anonymous ftp in ftp.diku.dk: /diku/users/

kris/TeX/xyrefer.ps.Z.

[4] Michael D. Spivak. The Joy of T

E

X|A Gourmet

Guide to Typesetting with the A

M

S-T

E

X Macro

Package. American Mathematical Society, second

edition, 1990.

12

